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Abstract Following the recognition of the importance 
of dealing with the effects of genotype-by-environment 
(G x E) interaction in multi-environment testing of 
genotypes in plant breeding programs, there has been 
substantial development in the area of analytical 
methodology to quantify and describe these interac- 
tions. Three maj or areas where there have been develop- 
ments are the analysis of variance, indirect selection, and 
pattern analysis methodologies. This has resulted in a 
wide range of analytical methods each with their own 
advocates. There is little doubt that the development of 
these methodologies has greatly contributed to an en- 
hanced understanding of the magnitude and form of 
G x E interactions and our ability to quantify their pres- 
ence in a multi-environment experiment. However, our 
understanding of the environmental and physiological 
bases of the nature of G x E interactions in plant breed- 
ing has not improved commensurably with the avai- 
lability of these methodologies. This may in part be due 
to concentration on the statistical aspects of the analyti- 
cal methodologies rather than on the complementary 
resolution of the biological basis of the differences in 
genotypic adaptation observed in plant breeding experi- 
ments. There are clear relationships between many of 
the analytical methodologies used for studying 
genotypic variation and G x E interaction in plant 
breeding experiments. However, from the numerous 
discussions on the relative merits of alternative ways of 
analysing G x E interactions which can be found in the 
literature, these relationships do not appear to be widely 
appreciated. This paper outlines the relevant theoretical 
relationships between the analysis of variance, indirect 
selection and pattern analysis methodologies, and their 
practical implications for the plant breeder interested in 
assessing the effects of G x E interaction on the response 
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to selection. The variance components estimated from 
the combined analysis of variance can be used to judge 
the relative magnitude of genotypic and G x E interac- 
tion variance. Where concern is on the effect of lack of 
correlation among environments, the G x E interaction 
component can be partitioned into a component due to 
heterogeneity of genotypic variance among environ- 
ments and another due to the lack of correlation among 
environments. In addition, the pooled genetic correla- 
tion among all environments can be estimated as the 
intraclass correlation from the variance components of 
the combined analysis of variance. Where G x E interac- 
tion accounts for a large proportion of the variation 
among genotypes, the individual genetic correlations 
between environments could be investigated rather than 
the pooled genetic correlation. Indirect selection theory 
can be applied to the case where the same character is 
measured on the same genotypes in different environ- 
ments. Where there are no correlations of error effects 
among environments, the phenotypic correlation be- 
tween environments may be used to investigate indirect 
response to selection. Pattern analysis (classification 
and ordination) methods based on standardised data 
can be used to summarise the relationships among 
environments in terms of the scope to exploit indirect 
selection. With the availability of this range of analytical 
methodology, it is now possible to investigate the results 
of more comprehensive experiments which attempt to 
understand the nature of differences in genotypic adap- 
tation. Hence a greater focus of interest on understand- 
ing the causes of the interaction can be achieved. 

Key words G x E interaction �9 Analysis of 
variance �9 Indirect selection �9 Pattern analysis 

Introduction 

When conducting multi-environment trials (METs), 
plant breeders commonly observe that genotypes 
change in their relative performance across test environ- 
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ments. This phenomenon, referred to as genotype-by- 
environment (G x E) interaction, can take on many 
forms (Haldane 1947; Allard and Bradshaw 1964). When 
investigating the form of G x E interactions, it is worth- 
while distinguishing between interaction due to hetero- 
geneity of genotypic variance among environments 
(Lefkovitch 1990) and that due to the lack of correlation 
of genotypic performance among environments (Dicker- 
son 1962; Cockerham 1963; Shorter and Mungomery 
1981), particularly where the latter results in re-ranking 
ofgenotypes across environments (Haldane 1947; Baker 
1988b, c, 1990). Eisemann et al. (1990) emphasised that it 
is that part of G x E interaction which leads to re- 
ranking which impedes response to selection as it can 
change the composition of the select and reject groups 
across environments. 

Following the early documentation of the presence 
and form of G • E interactions (Haldane 1947; Corn- 
stock and Moll 1963; Allard and Bradshaw 1964), there 
has been considerable research on their impact in plant 
breeding. The focus on G x E interactions as a compo- 
nent of plant adaptation is largely a consequence of the 
uncertainty they introduce into the process of selection 
among genotypes, particularly where this is based on 
their phenotypic performance in a relatively small 
sample of environments taken from the target popula- 
tion of environments. Comstock and Moll (1963) gave a 
comprehensive overview of the impact of G x E interac- 
tions on the study of differences in genotypic adaptation. 
They emphasised the flux between the genotypic and 
G x E interaction components of variance and the de- 
pendence of this upon the way in which the target 
population of environments was sampled. More recent- 
ly, Nyquist (1991) has extended the discussions of Corn- 
stock and Moll (1963) to consider the impact of G x E 
interactions on the estimation of heritability and the 
prediction of response to selection. 

The majority of research on G x E interactions to- 
date has concentrated upon the development of analyti- 
cal methodologies for quantifying their magnitude, 
characterising their form, and the development of strate- 
gies to select among genotypes based on the use of 
predominantly biometrical methods. There are a num- 
ber of reviews of these analytical methods which are 
worth consulting (Freeman 1973, 1990; Hill 1975; West- 
cott 1986; Baker, 1988a; Crossa 1990; DeLacy and 
Cooper 1990; Basford et al. 1991; Cooper et al. 1993c). 
Many others have focussed on discussing the merits, or 
lack of merit, of one or two methods (Finlay and Wilkin- 
son 1963; Byth et al. 1976; Fox and Rosielle 1982; Crossa 
et al. 1991; Zobel 1990; Bull et al. 1992). Alternatively, 
some workers have attempted to define the environ- 
mental causes and physiological basis of the G x E 
interactions (Baker 1988b; Eisemann et al. 1990; Lawn 
and Imrie 1991, 1993; Shorter et al. 1991). 

In the study of G • E interactions, most papers con- 
centrate on using only one or two of the available 
analytical methods without discussing their inter-rela- 
tions. The analysis of variance has been widely used to 

partition total phenotypic variation into components 
due to genotype, G x E interaction, and error (micro- 
environmental variation) (Gardner 1963; Baker 1969; 
Moll and Stuber 1974; Brennan and Byth 1979; DeLacy 
et al. 1990b; Nyquist 1991). The relative sizes of the 
variance components are frequently used to quantify the 
magnitude of G x E interactions. Where the ratio of 
G x E interaction to genotypic variation is high, G x E 
interaction is considered to present the plant breeder 
with a problem where the objective is selection among 
genotypes. 

Falconer (1952, 1989) argued that the genetic correla- 
tion between environments can be used to quantify the 
importance of G x E interactions. As the genetic corre- 
lation decreases, G x E interaction has a stronger influ- 
ence and it is argued that different genetic systems 
become more important for adaptation in the two envi- 
ronments. Many workers have adopted this approach 
and studied the impact of G x E interactions as a case of 
indirect selection (Yamada 1962; Atlin and Frey 1989, 
1990; Shaw 1989; Itoh and Yamada 1990; Cooper et al. 
1993a, b). However, as the number of environments 
sampled in METs increases, the number of pairwise 
comparisons between environments increases exponen- 
tially. To deal with this problem many workers have 
used pattern analysis (classification and ordination) 
methodology to summarise the relationships among the 
environments on the way in which they discriminate 
among the genotypes. Pattern analysis uses a comple- 
mentary relationship between the similarity (required by 
ordination procedures) and dissimilarity (required by 
hierarchical classification procedures) measures derived 
by Gower (1966, 1967) to provide a companion classifi- 
cation and ordination analyses of the same data. These 
companion analyses highlight different aspects of the 
same data. DeLacy and Cooper (1990) and DeLacy et al. 
(1990a) presented some of these relationships for the 
analysis of MET data. 

Classification analysis results in the definition of 
groups of environments (Homer and Frey 1957; Abou- 
E1-Fittouh et al. 1969; Fox and Rosielle 1982; Ivory 
et al. 1991; Cooper et al. 1993b). The investigation then 
proceeds by studying G x E interaction among the 
groups of environments rather than individual environ- 
ments. This reduces the number of comparisons which 
require consideration. To summarise the discrimination 
among genotypes for the groups of environments a 
two-way classification can be conducted (Byth et al. 
1976) by superimposing the results of the independent 
classification of genotypes and environments. Truncat- 
ing the classifications of genotypes and environments at 
some level (DeLacy 1981) allows the investigation of the 
among- and within-group partition of the genotypic and 
G x E interaction variation. A response plot based on 
group means can be constructed to graphically portray 
the group-mean patterns of adaptation emphasised by 
the classification. 

Classification requires a proximity measure and 
grouping strategy. For agglomerative hierarchical clas- 
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sification a commonly-used combination is the proxi- 
mity measure squared Euclidean distance (SED) and the 
grouping strategy incremental sum of squares (ISS) 
(Ward 1963; Burr 1968, 1970; Wishart 1969). Fox and 
Rosielle (1982) showed that if the raw data are trans- 
formed by subtracting the environment mean (center- 
ing) and dividing (scaling) by the square root of the 
phenotypic variance among line means within the envi- 
ronment, the resultant environment-standardised 
squared Euclidean distance (esSED) provides a dissimi- 
larity measure which compares environments on the 
basis of their pairwise phenotypic correlation (rp). The 
esSED and rp between two environments provide com- 
plementary information (Gower 1966, 1967), i.e., they 
are complements or complementary proximity 
measures. Fox and Rosielle (1982) refered to the center- 
ing described above as coding. 

Cooper et al. (1993b) used the esSED with the simpli- 
fied expression for indirect selection from one environ- 
ment to another (Falconer 1952; Burdon 1977; Pederson 
and Rathjen 1983) to inter-relate indirect selection the- 
ory with classification theory. The advantages of group- 
ing environments based on standardised data, over 
alternative transformations, were discussed theoreti- 
cally by DeLacy and Cooper (1990) and DeLacy et al. 
(1990a) and investigated experimentally by Cooper et al. 
(1993d). From these discussions it is clear that classifica- 
tion of environments based on an agglomerative hier- 
archical clustering procedure involving ISS with esSED, 
partitions the environments into groups which reflect 
the opportunities for exploiting indirect selection 
among the environments. Complementary information 
to that identified by classification can be obtained by 
ordination of the environments. As with classification, 
there are a number of alternative methods for studying 
the relationships among environments. DeLacy and 
Cooper (1990) showed that ordinations based on data 
standardised as above for classification, will exploit the 
same information as that of the classification on esSED 
and will reflect the phenotypic correlation among envi- 
ronments and, therefore, opportunities for exploiting 
indirect selection among environments. 

Recently, ordination methods have recieved renewed 
attention for the analysis of data from METs with the 
development of the symmetric decomposition via singu- 
lar value decomposition (SVD). This enables a graphical 
display of the relativity among genotypes and environ- 
ments in a single graph, the biplot, introduced by Gab- 
riel (1971) and applied to plant breeding data by Kem- 
pton (1984). The biplot presents the discrimination 
among genotypes within each environment, as represen- 
ted by the ordination, for a synoptic inspection. The 
spatial relationships among the genotypes and environ- 
ments on the biplot assists the investigation of dif- 
ferences in genotypic adaptation in METs. An increas- 
ing number of workers are applying this procedure 
in various forms (Kempton 1984; Gauch and Zobel 
1988; Zobel et al. 1988; Crossa et al. 1990, 1991; Zobel 
1990). 

There are theoretical relationships which are not fully 
appreciated between many of the analytical methods 
which allow a comprehensive statistical analysis of 
G x E interactions in METs. We provide a synthesis of 
the relationships between analysis of variance, indirect 
selection and pattern analysis [-classification and ordi- 
nation (Williams 1976)] methodologies where the 
emphasis is on response to selection as opposed to in- 
vestigating the physiological and environmental causes 
of G x E interaction. The methodology is applied to a 
wheat data set collected in Queensland, Australia, to 
demonstrate the practical implications of the relation- 
ships between the analytical methods. 

Materials and methods 

Theoretical development 

To assist development of the relationship between G • E interaction 
in METs and indirect selection theory applied to the same character 
measured on the same genotypes in different environments, a linear 
model for describing, the phenotypic performance of genotypes in 
individual environments is first defined. The linear model for one 
environment is defined such that it can be directly extended and 
defined for describing the phenotypic performance of genotypes 
across multiple environments. 

The performance of ng genotypes tested in one of n e environments 
with n r replications can be described in terms of the linear model 

Ylkj=rrlj4-gijq-~ikj, i = 1  . . . . .  rig, j = l  . . . .  ,ne, k = l  . . . .  ,n r, (1) 

where Y~kj is the kth observation of genotype i in environment j; mj is 
the grand mean in environment j; gij is the effect of the ith genotype in 

�9 2 1. environment j and Is NID(0, ao~j) ) ,eik j is the error effect associated 
with the kth observation of genotype i in environment j and is 
NID(0, O'2(j)). 

Where the random model above is assumed, the standard analysis 
of variance procedures can be applied and variance components 
estimated for genotypes and error by equating the estimated and 
expected mean squares and solving for the variance components. 
These variance component estimates give a partitioning of the 
phenotypic variance among genotype means (Comstock and Moll 
1963; Nyquist 1991) as 

2 
2 2 + % ,  (2) O'pj ~ O'0j 

/'/r 

where .ap21j) is the phenotypic variance component among genotype 
means an environment j J  These components of variance can be used 
to estimate genotype mean heritability for environment j as 

2 
2 O'gj 

hj - 2, (3) 
2 ~ej 

6o~ q- - -  
nr 

and the predicted response to selection in environment j as 

AGj = ijh]apj, (4) 

1 Because of typesetting difficulties in writing sub-subscripts in the 
text, sub-subscripts used in equations will appear in the text con- 
tained in brackets following subscripts 
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where ij is the standardised selection differential in environment j. 
Since G x E interaction is not partitioned from the genotypic vari- 
ance component, equation (4) should be considered to predict ad- 
vance for the same environment in which selection was practised. 

Where the same genotypes are tested over a series of ne environ- 
ments, the data collected from the MET can be compiled in a matrix 
indexed with genotypes as rows and environments as columns. We 
refer to this form of presentation of the data as a GE matrix. 
Extending model (1) to a pooled analysis over all environments, 
genotype performance in the GE matrix can be described in terms of 
the linear model 

Yijk = m + gi + ej  + (ge)i j + e i j k ,  ( 5 )  

with the same limits as before and Yqk is the kth observation on 
genotype i in environment j; m is the grand mean over all obser- 
vations; gg is the effect of the ith genotype and is NID(0, %1). ej is the 
effect of thej th  enwronment and Is NID(0, a~); (ge)~j as the interaction 
effect between the ith genotype and jth environment and is NID(0, 
ao~); and %k is the error effect associated with the kth observation on 
genotype i in environment j and is NID(0, a~). 

Again, where the random model is assumed the standard analysis 
of variance procedures can be applied and variance components 
estimated for genotypes, G x E interaction, and error, by equating the 
estimated and expected mean squares and solving for the variance 
components. These varaince component estimates give a partitioning 
of the phenotypic variance, a~, among genotype means as, 

2 2 
2 = 0.2 + O'oe _~ O'e ap . (6) 

n e r l en  r 

These components of variance can be used to estimate line mean 
heritability over all environments as 

2 
h 2 _ 0"9 2 , (7) 2 O'e 

n e n e H r  

and the average predicted response to selection over all environments 
a s  

A G  = ih26p .  (8) 

Equation (8) predicts genetic advance averaged over the set of envi- 
ronments in which the genotypes were tested. This estimate of 
response to selection applies to the target population of environments 
when the sample of test environments used in the MET is a random 
sample from the target population of environments (Cooper et al. 
1993c). From equations (7) and (8) it is seen that as the magnitude of 
the G x E interaction component of variance increases relative to the 
genotypic component both heritability and response to selection are 
reduced. Because of this inverse relationship, it is widely argued that 
an investigation of both the statistical and biological nature of G x E 
interaction is commonly required in the consideration of results from 
METs. 

It is instructive to investigate the relationships among the form of 
discrimination among genotypes embodied in the linear models for 
one environment [equation (1)] and for many environments [equa- 
tion (5)]. 

Cockerham (1963) gave an expression for the G x E interaction 
component of variance which partitioned components due to hetero- 
geneity of genotypic variance and the lack of genetic correlation 
among environments, 

[(%j _ %j,)2 + 2%j%j,(1 - r0j~,) ] 
2 j < f , j '  

(roe --  ne(n e - -  1) ' 
(9) 

where agO) and 6a(.j, ) are the square roots of genotypic variance 
components m environments j and j', respectively, as defined in the 
single environment model (1); and ro(jj, ~ is the genetic correlation 

between environments j and j'. Shorter and Mungomery (1981) 
referred to the first term of this expression as the component of the 
G x E interaction due to heterogeneity of genotypic variance among 
environments, since 

J<YJ' J (10) 
V ( % ~ )  n~(n~ - 1) n~ -- 1 ' 

where ~0 is the mean overj  of a (. The second from of equation (10), 
�9 . Off)" . . 

also given by Dmkerson (1962), is more lntmtive as it is recognisable 
as the variance of the genotypic standard deviation components from 
each environment. The second term in equation (9), that due to lack of 
genetic correlation among environments, can be referred to as 

[2%~ %r(1 - %j,)] 
L ( r ~  = J<J'J' n ~ ( n ~ -  1) ( l l )  

If all the genetic correlations among environments are one, L(rg(e,v)) 
will equal zero and there will be no G x E interaction due to this 
source. Conversely, to the extent that the correlation among the 
performance of genotypes in different environments decreases there 
will be a corresponding increase in G x E interaction. Therefore, the 
component of the G x E interaction which complicates selection is 
described by (11). The component due to heterogeneity of genotypic 
variance will not directly affect selection decisions. Thus, any study 
which investigates the impact of G x E interaction on response to 
selection should destinguish between these two components. 

Dickerson (1962) gave another expression for the G x E variance: 
viz. 

2 

ao~ = V(%~,,) + ~ ( 1  -- ro), (12) 

where V ( a g ( e . J  is as before, the bar over %(j)agtj,) refers to the 
arithmetic average of all the pairwise geometric means among the 
genotypic variance components of the environments, and % is the 
pooled genetic correlation among all the environments, namely 

E O'g j f  
r~ J < j' 'j' trgjj, (13) 

f fgSVgj ,  ~ g j O ' g j '  

J < l , J '  

where a~(jj,) is the genotypic covariance between environmentsj and 
j '  the bar over ag(~,,) refers to the arithmetic average of all pairwise ' . . J . . 
geneUc covarlances, and the divisors ne(n e - -  1)/2 cancel. Dlckerson 
(1962) also showed that the pooled genetic correlation among the 
environments r 0 is equal to the intraclass correlation among geno- 
types corrected for heterogeneity of genotypic variance among envi- 
ronments. This relationship of Dickerson in our notation is 

- -  2 2 
O'0j f ITg O'g 

r g -  - 2 2 2 (14) 
ag + V(%~~ 60 + L(%o,f (~ g j f f  gj, (~ ge - -  

From Dickerson's (1962) expression for the G x E variance given in 
equation (12) it can be seen that the part of G x E variation which is 
due to the lack of correlation among genotypes across all environ- 
ments is a function of the pooled genetic correlation among environ- 
ments or the corrected intraclass genetic correlation, [equation (14)]. 
It can be shown that the average of all the genetic covariances 
between pairs of environments is the pooled genetic variance compo- 
nent from the pooled analysis of variance as defined for the model in 
equation (5). Also, the average of all the pairwise geometric means of 
the genetic variance components from individual environment analy- 
sis [equation (1)] is the sum of the genetic and G x E variance 
corrected for heterogeneity as defined in the pooled analysis. For 
further discussion of these relationships see Itoh and Yamada (1990). 
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To interrelate the G x E interaction variance component with 
pattern analysis methodology we give another expression for the 
G x E variance as 

2 Fig 
E (a~j+aoj,--2aoj, ,)  2 1Oojj, 

2 j < j t , j t  j < j , , j ,  n g  - -  

ag~ -- ne (n~-  1) - n~(n~ -- 1) ' 
(15) 

where all the terms are as defined previously and D0~jj, ) is a measure of 
the difference in genetic performance of the genotypes in environ- 
mentsj andj'  O (..,. can also be considered as a measure of a difference 

." O J r  ) . . t  . . . . . .  

between environments j and j m the way an which they discriminate 
between the genetic performance of genotypes. DeLacy and Cooper 
(1990) and DeLacy et al. (1990a) discussed alternative forms of D01jj, ) 
which have been used for pattern analysis of relationships among 
environments in METs. The form of the G x E interaction variance 
component given in equation (15) is half the average over all pairs of 
environments of the measures of difference in genotype performance 
among environments. The size of the interaction depends on both the 
genotypic variances within an environment and on the size of the 
genetic covariance among the pairs of environments. Genotype- 
by-environment interaction is reduced when the genetic covariance is 
positive (positive correlation of genotype performance in each envi- 
ronment), which is the expected condition. The-first two forms of the 
expression for the G x E interaction variation variance component, 
equations (9) and (12), emphasise that heterogeneity of genotypic 
variance among environments inflates G x E interaction. Where 
heterogeneity of genotypic variance among environments is large the 
G x E variance component will overstate the complication to selec- 
tion introduced by G x E interaction. A more useful treatment of 
G x E interaction in METs would involve an analysis which focuses 
on the component of the interaction which reduces the correlation of 
genotype performance among environments and the impact of this on 
selection. 

From the general relationships between similarity and dissimilar- 
ity measures given by Gower (1966, 1967) and developed for the 
analysis of METs by DeLacy and Cooper (1990) and DeLacy et al. 
(1990a), D~ is recognisable as the squared Euclidean distance 
between the genetic performance of the genotypes m environments j 
and j '  Dg j ,  is the complement of the genetic covariance cr .... , the 

�9 . " . J . ' g u J ' )  

similarity measure for the genetac performance of the same genotypes 
measured in environments j and j'. Equation (15) enables a pattern 
analysis to be undertaken to gain an understanding of all the pairwise 
relationships between the genetic parformance of the genotypes in all 
environments. As the G x E interaction variance is the average of all 
these relationships, an investigation of specific aspects of the G x E 
interaction complex should lead to a greater understanding of the 
nature of G x E interactions. An investigation of the patterns of 
genetic performance which reflect that proportion of G x E interac- 
tion caused by failure of genetic correlation between environments, 
L(rgto,O, can be made by defining 

g/g 
n o - 1 esD~jj, = 2(1 -- rojj, ) (16) 

as the SED between genotype performance in environments scaled to 
have a genetic variance of one. A pattern analysis of relationships among 
environments based on the complement of esDa(ij,), rg~jj,), is a direct 
examination of the failure of genetic correlation among environ- 
ments. From the relationships in equations (15) and (16), the geno- 
typic correlation matrix for all pairwise comparisons among environ- 
ments can be investigated to assess the impact of G x E interaction on 
selection. Mirzawan et al. (1993) adopted this strategy for the analysis �9 
of the relationships among environments in sugarcane METs. 

The G x E interaction component can also be investigated by 
considering the phenotypic correlations among environments. Fal- 
coner (1952, 1989) gave the equation for indirect response to selection 
in one environment from selection in another as 

AGj/j, = t'j,hjh~,r gjjapj , (17) 

where AGi/j, is the indirect response in environment j from selection in 
environment f ,  and hj and hi, are the square roots of the genotype 

mean heritability in environments j and j', respectively. When it is 
assumed that there is no environmental covariance (Burdon 1977), 
the phenotypic correlation among a pair of environments is 

r pj~, = hjhj,r o~j,, (18) 

which allows estimation of the genetic correlation among two envi- 
ronments. A simplified expression for indirect selection was derived 
by Pederson and Rathjen (1983) by substituting equation (18) into 
equation (17) to give 

AGj/j, = i j p j r  pj. (19) 

Therefore, while the genetic correlation is directly related to the G x E 
interaction, equation (9), the phenotypic correlation is directly related 
to correlated genetic gain in one environment from selection in 
another through the relationships given in equations (17), (18) and 
(19). In addition, these relationships allow the incorporation of 
indirect selection theory into pattern analyses. Fox and Rosielle 
(1982) showed that the squared Euclidean distance calculated 
between two environments on data which has been environment 
Standardised (subtracting environment mean and dividing by 
environment standard deviation) provides a dissimilarity measure 
which compares environments on the basis of their pairwise 
phenotypic correlation 

n~ esDp.,  = 2(1 -- r~pjj,), (20) 
r / g - -  1 

which is an expression for squared for Eluclidean distance of the same 
form as equation(16). The resultant environment standardised 
squared Euclidean distance, esD t j j ,  between the standardised geno- �9 . p .  t 

type scores in each environment is the complement of the phenotyplc 
correlation among environments, rpuj,), and enables a pattern analy- 
sis to be performed. Cooper et al. (1993b) used the esDpwo, (equa- 
tion (20)), the rpt#, ) and the simplified expression for indirect selection, 
[equation (19)] to relate indirect selection theory with pattern analy- 
sis theory. The advantages of a pattern analysis of environments 
based on standardised data, over alternative transformations, were 
discussed theoretically by DeLacy and Cooper (1990) and DeLacy 
et al. (1990a), and experimentally demonstrated by Cooper et al. 
(1993d). The hierarchical classification of environments, based on 
squared Euclidean distance and incremental sum of squares, using the 
above standardisation, partitions the environments into groups 
which reflect the opportunities for exploiting indirect selection among 
the environments (Cooper et al. 1993b). 

The two-way classification arising from an analysis on environ- 
ment standardised data enables an investigation of the genotypic and 
G • E interaction variation which is appropriate for investigating 
their effect on indirect selection among environments�9 A response plot 
based on group means can be constructed to portray the group mean 
patterns of adaptation related to selection which are emphasised by 
this analysis. To complete the pattern analysis an ordination based on 
data standardised as above will exploit the same information as that 
of the classification on esDpup). This ordination will reflect the 
phenotypic correlation among environments and, therefore, oppor- 
tunities for exploiting indirect selection among environments. The 
biplot (Gabriel 1971) from the ordination analyses based on environ- 
ment standardised data portrays these environmental relationships 
and genotypic discrimination in a graphical form. 

Application 

Data set. Fifteen wheat lines were yield tested at 10 environments in 
1988 in Queensland, Australia: Emerald sowing date 1 (Emd-1) and 
sowing date 2 (Emd-2), Kingsthorpe (King), Gatton (Gatt), Biloela 
(Bil), Fernlees (Fern), Toobeah (Toob), The Gums (Gums), Jimbour 
(Jim) and Pampas (Pamp). The environments sampled the main 
regions of the Queensland wheat belt identified by Brennan et al. 
(1981)�9 The lines included three local cultivars, Hartog, Banks and 
Kite, and 12 advanced lines from the l l t h  and 17th International 
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Bread Wheat Screening Nurseries conducted by CIMMYT. Each 
experiment involved a randomised complete block design with two 
replicates. Grain yield .was measured using small-plot harvesting 
equipment and was estimated at 12% moisture. 

Analysis of variance. A completely random model was assumed and 
variance components for lines, line by environment (L x E) interac- 
tion, and experimental error, were estimated by equating the mean 
squares with their expected mean squares and solving for the variance 
components. Line mean heritability for grain yield in environment j 
(h~) was est!mated using equa!ion (3) and line mean heritability across 
the ten environments was estimated using equataon (7). 

Indirect selection. The L • E interaction variance component was 
partitioned into components due to heterogeneity of genotypic vari- 
ance and lack of correlation among environments using equation (9). 
The pooled genetic correlation among environments and the intra- 
class correlation from the combined analysis of variance were es- 
timated from equation (14). The full matrix of pairwise genetic corre- 
lations among environments was estimated from the appropriate 
phenotypic correlations using equation (18). 

Pattern analysis. Prior to the pattern analyses, the line grain yield 
data were transformed to standardised data following Fox and 
Rosielle (1982) by subtracting the environment means and dividing by 
the square root of the phenotypic variance within each environment. 
The environments and lines were classified using an agglomerative 
hierarchical classification procedure on the standardised data with 
squared Euclidean distance as a dissimilarity measure, equation (20), 
and incremental sum of squares as a grouping strategy (Ward 1963; 
Burr 1968, 1970; Wishart 1969). The classifications were truncated 
following the guidelines of DeLacy (1981). A response plot for the 
two-way classification (Byth et al. 1976) was constructed. 

An ordination of the lines and the environments was conducted 
on the standarised grain yield data using the singular value decompo- 
sition procedure. A biplot (Gabriel 1971) of the first two principal 
components for the line and environment ordinations was construct- 
ed to portray the relationships among the environments and the 
discrimination among the lines in each environment on the first two 
principal components. 

The low dimentional representations of line discrimination from 
the two-way classification and the ordination were compared. 

Results 

T h e  e n v i r o n m e n t  m e a n  y ie lds  r a n g e d  f rom 2.04 to  
5.26 t h a -  1 a n d  the re  were  s ign i f ican t  (P < 0.05) differen-  
ces a m o n g  the  l ine m e a n s  in each  e n v i r o n m e n t  (Tab le  1). 
L ine  m e a n  h e r i t a b i l i t y  wi th in  the  e n v i r o n m e n t s  r a n g e d  
f rom 0.675 to 0.945. 

T h e  c o m b i n e d  ana lys i s  of  v a r i a n c e  iden t i f i ed  signif i-  
c an t  (P  < 0.05) v a r i a t i o n  a m o n g  l ines  a n d  L x E in t e r ac -  
t ion  (Tab l e  2). T h e  v a r i a n c e  c o m p o n e n t  for  L x E in te r -  
a c t i o n  c o m p o n e n t  was  0 .8- t imes  t ha t  for  lines. W h i l e  the  
L x E i n t e r a c t i o n  v a r i a n c e  c o m p o n e n t  was  less t h a n  
t ha t  for  lines, 6 9 %  of  this  i n t e r a c t i o n  was  a s s o c i a t e d  
wi th  the  l ack  o f  c o r r e l a t i o n  a m o n g  e n v i r o n m e n t s  a n d  
3 1 %  wi th  the  h e t e r o g e n e i t y  o f  g e n o t y p i c  v a r i a n c e  
a m o n g  e n v i r o n m e n t s .  T h e  p o o l e d  gene t ic  c o r r e l a t i o n  
a m o n g  the  e n v i r o n m e n t s  was  0.651. There fo re ,  t he re  
was  s t r o n g  ev idence  t ha t  the  L x E i n t e r a c t i o n  w o u l d  
c o m p l i c a t e  se lec t ion  a m o n g  these  lines. 

T h e r e  was  a l a rge  r a n g e  in the  gene t ic  a n d  p h e n o t y p i c  
c o r r e l a t i o n s  a m o n g  al l  p a i r w i s e  c o m p a r i s o n s  b e t w e e n  
e n v i r o n m e n t s  (Tab le  3). T h e  gene t ic  c o r r e l a t i o n  r a n g e d  
f rom the  low va lue  o f  - 0.091 b e t w e e n  Bi loe la  (Bil) a n d  
E m e r a l d  sowing  d a t e  2 (Emd-2)  to  the  h igh  va lue  o f  
1.047, b e t w e e n  F e r n l e e s  (Fe rn )  a n d  J i m b o u r  (Jim), 
wh ich  was  s l igh t ly  g r e a t e r  t h a n  the  t h e o r e t i c a l  l imi t  for  a 
c o r r e l a t i on .  T w e n t y - s i x  o f  the  for ty- f ive  p h e n o t y p i c  co r -  
re la t ions  a m o n g  e n v i r o n m e n t s  were  s ignif icant  (P < 0.05) 
a n d  the  r a n g e  was  f rom - 0.067 to  0.898. T h e  wide  r a n g e  
in p h e n o t y p i c  a n d  gene t ic  c o r r e l a t i o n s  i n d i c a t e d  con -  
s i de r ab l e  di f ferences  in the  p a t t e r n  o f  d i s c r i m i n a t i o n  
a m o n g  the  l ines for  y ie ld  ove r  the  ten  e n v i r o n m e n t s .  

Since  b o t h  e n v i r o n m e n t  a n d  l ine c lass i f i ca t ions  were  
b a s e d  o n  e n v i r o n m e n t  s t a n d a r d i s e d  da t a ,  the  p a -  

Table 1 Line mean grain yield 
(t ha-  1) for 15 wheat lines tested 
in ten environments in 
Queenland in 1988 and estimates 
of genotypic and error variance 
components, phenotypic 
variance among line means, and 
heritability of variance among 
line means 

Line Environment 

Emd-1 Emd-2 King Gatt Bil Fern Toob Gums Pamp Jim 

17IB7 3.331 4 . 0 5 1  2 . 5 9 2  5 . 0 9 3  1 . 7 4 2  4.977 3 . 3 0 8  3 . 0 3 1  2.909 3.145 
17IB30 4.482 4.319 2 . 9 5 1  5 . 5 7 0  2 . 3 5 8  5 . 7 5 0  3 . 4 4 8  4.032 3 . 0 3 2  3.806 
17IB31 3.496 3 . 8 9 3  2 . 5 7 1  4.592 1 . 7 7 3  5 . 1 5 1  2 . 7 8 3  3 . 1 3 9  3 . 1 3 0  3.382 
17IB38 3 . 0 4 2  4.399 2 . 6 9 3  4.606 1 . 9 4 2  5 . 2 8 5  2.447 3 . 4 7 1  2 . 9 1 9  3.284 
17IB53 3 . 4 0 1  4.244 2.846 5 . 4 5 1  2 . 0 7 5  5 . 4 3 2  2 . 7 1 9  3 . 2 9 2  2 . 9 2 9  3.662 
17IB64 3 . 6 3 9  4 . 0 8 8  2 . 7 0 4  4.694 1 . 8 9 9  5 . 4 3 3  3 . 1 6 9  3 . 4 9 7  3 . 4 1 1  3.515 
17IB92 3 . 8 3 9  3 . 7 5 1  2 . 2 6 7  4 . 3 7 9  2.142 5 . 1 7 2  2 . 8 6 0  3 . 4 7 3  3 . 3 1 5  3.154 
17IB129 3 .148  3 . 4 2 9  2 . 1 6 8  3 . 7 3 3  2 . 6 6 3  4 . 7 8 2  2 . 1 0 3  3 . 2 5 6  2.486 2.899 
17IB173 4.687 4.007 3 . 3 5 7  4.956 2 . 0 9 8  4.834 3 . 1 2 4  3 . 7 9 2  3 . 0 6 4  3.305 
17IB206 4.520 4 . 0 6 1  3 . 3 9 3  6 . 2 9 6  2 . 5 0 5  6 . 4 8 0  3 . 2 2 6  3 . 6 4 0  3 . 2 3 1  4.126 
llIB50 3 . 5 1 1  3 . 5 5 8  2 . 8 8 3  4.596 1.592 5 .039  2.990 3 . 4 3 8  2 . 9 2 3  3.294 
Genaro 4.324 4 . 4 8 1  3 . 2 5 0  6.210 2 . 1 6 7  5 . 8 0 1  3 . 8 1 7  3 . 4 9 1  3 . 3 5 6  4.120 
Hartog 3 . 3 2 7  4.049 3 . 1 1 3  4.559 2.050 5 . 4 0 8  2.832 3 . 5 3 5  2.934 3.386 
Banks 3.028 4 . 4 2 1  1 . 8 5 3  2 . 8 2 1  1 . 6 5 3  5.020 2 . 0 9 6  3 . 3 4 2  2.406 3.080 
Kite 3.089 3 . 3 6 3  2 . 1 7 3  5 . 4 0 9  1 . 9 1 0  4.306 2 . 7 1 9  3 . 0 2 4  2.456 2.985 

3.656 4 . 0 0 8  2 . 7 2 1  4.864 2 . 0 3 8  5 . 2 5 8  2 . 9 0 9  3 . 4 3 0  2.967 3.409 
LSDso, " 0.600 0 . 5 7 5  0.395 1 . 2 7 0  0 . 4 4 3  0 . 5 8 1  0.434 0 . 4 6 9  0 . 2 2 5  0.430 

z 0.078 0.072 0.034 0 . 3 5 1  0 . 0 4 3  0 . 0 7 3  0 . 0 4 1  0.048 0 . 0 1 1  0.040 O's(j) 
z 0.294 0.089 0.196 0.616 0 . 0 7 1  0 . 2 2 3  0.202 0.049 0.094 0.121 ~o(J) 
z 0.333 0.125 0 . 2 1 3  0.792 0.092 0.259 0.222 0 . 0 7 3  0.100 0.141 ~p(j) 

h~ 0.883 0 . 7 1 1  0.920 0 . 7 7 8  0.769 0 . 8 5 8  0 . 9 0 8  0 . 6 7 5  0 . 9 4 5  0.858 



Table 2 Estimates of genetic parameters for the combined analysis of 
grain yield (t ha -  2) of 15 wheat lines tested over ten environments in 
Queensland in 1988 

Statistic Estimate % of G • E 

- , 2 Genotyplc variance component (~r) 0.109 127 
. . . 9 2 

G x E interaction variance component (a0e) 0.086 
Heterogeneity of genotypic variance 0.027 31 

Lack of genetic correlation [L(r0~e.v))] 0.059 69 
�9 2 Error variance component (o~) 0.079 92 

Line mean heritability (h 2) 0.897 - 
Pooled genetic correlation (%) 0.651 - 

rameters pertaining to the classifications were cal- 
culated and expressed on environment standardised 
data. The environment classification was truncated at 
the five environment group level where 70.6% of the 
L • E interaction sum of squares was partitioned among 
the environment groups. The partitioning of line and 
L • E interaction sums of squares among groups for the 
line classification was investigated at the five environ- 
ment group truncation level. A high percentage of the 
line sum of squares was accounted for by a small number 
of line groups. At the three line group level 91.0% of the 
line sum of squares was partitioned among the groups. 
Therefore, differences among the lines for broad stan- 
dardised grain yield (std-yield) adaptation across the 
environments were well represented by three line 
groups. However, for L • E interaction there was con- 
sistently a smaller percentage of the total component 
sum of squares accounted for by the groups. At the three 
line group level 14.0% of the total L x E interaction sum 
of squares was partitioned among the groups. To allow a 
more detailed inspection of the L • E interaction, the 
line classification was truncated at the five group level 
where 40.5% of the L x E interaction sum of squares 
was partitioned among the groups. 

Truncating the environment classification at the five 
group level resulted in two groups with a single member, 
two groups with two members, and one with four mem- 
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bers (Fig. 1). The truncation of the line classification at 
the five group level identified two groups with one 
member, one group with two members, one group with 
three members, and a larger group with eight members 
(Fig. 2). Group 22 comprised three lines derived from 
the same cross (Veery) suggesting there was a genetic 
basis to the grouping of the lines. 

While only 40.5% of the L • E interaction sum of 
squares was represented by the two-way classification, 
the five groups of lines expressed distinctive patterns of 
std-yield across the five environment groups (Fig. 3). 
Line groups 22 and 25 both expressed a stable std-yield 
response across the environment groups; however, these 
had different average std-yield. Group 22 had a high 
average std-yield while group 25 was intermediate. The 
three remaining groups of lines in general expressed high 
std-yield in one environment group but either low or 
intermediate std-yield in the other groups of environ- 
ments. Group 9 had high std-yield in environment 
group 13 but was intermediate in the other four. Groups 
24 and 14 expressed high std-yield in environment 
groups 5 and 2, respectively, but were generally of low 
std-yield in the remaining environment groups. Only 
line group 22 expressed high std-yield in environment 
groups 11 and 15, which together accounted for six of 
the ten environments. Therefore, the broad adaptation 
of the three lines comparising group 23 conferred 
specific adaptation to the environment groups 11 and 15 
which was not expressed by the other groups of lines. 

The proximities of the lines and environments on the 
first two vectors from the ordinations (Fig. 4) strongly 
reflected the relationships among both lines and envi- 
ronments which were identified by the classification 
(Figs. 1 and 2). The five groups of lines were clearly 
distinguished on the first vector, which largely reflected 
the average std-yield of the lines across the environ- 
ments (Fig. 4). The second vector distinguished between 
line groups 14 and 24, the two low performing groups, 
and to a lesser extent between groups 9 and 25, the two 
intermediate performing groups. The first two vectors of 
the environment ordination distinguished between envi- 
ronment groups 5, 13 and 2 but did not separate envi- 
ronment groups 11 and 15. 

Table 3 Genetic (upper triangle) 
and phenotypic (lower triangle) 
correlation coefficients among 
all pairwise comparisons among 
ten environments for grain yield 
of 15 wheat lines 

* Significant at the 5% probabil- 
ity level 

Environment 

Emd-1 Emd-2 King Gatt Bil Fern Toob Gums Pamp Jim 

Emd-1 0.321 0.813 0.737 0.537 0.652 0.818 0.967 0.701 0.797 
Emd-2 0.254 0.411 0.211 -0.091 0.742 0.356 0.591 0.399 0.730 
King 0.733* 0.333 0.851 0.318 0.709 0.777 0.750 0.675 0.853 
Gatt 0.610" 0.157 0.720* 0.418 0.652 0.943 0.338 0.615 0.927 
Bil 0.444 - 0.067 0.267 0.323 0.494 0.095 0.574 0.132 0.405 
Fern 0.568* 0.580* 0.630* 0.533* 0.401 0.569 0.726 0.699 1.047 
Toob 0.732* 0.286 0.710" 0.793* 0.079 0.502 0.505 0.785 0.806 
Gums 0.746* 0.410 0.591" 0.245 0.413 0.552* 0.395 0.538 0.693 
Pamp 0.640* 0.327 0.629" 0.528* 0.113 0.629* 0.727* 0.429 0.735 
Jim 0.693* 0.570* 0.758* 0.757* 0.329 0.898* 0.711" 0.527* 0.662* 
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Fig. 1 Dendrogram, truncated at the five group level, for the hie- 
rarchical classification by Ward's method on environment standar- 
dised grain yield data often environments on the data from 15 wheat 
lines grown in them 
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15 wheat lines evaluated over ten environments 
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Fig. 2 Dendrogram, truncated at the five group level, for the 
hierarchical classification by Ward's method on environment 
standardised grain yield data of 15 wheat lines evaluated in ten 
environments 
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Fig. 4 Biplot for the ordination of environment standardised grain 
yield of 15 wheat lines evaluated in ten environments. Solid boundaries 
identify the lines included in the five line groups anddashed bound- 
aries identify the environments included in the five environment 
groups produced by two-way classification. Genotype group names 
preceded by G and environment group names preceded by E 

Projecting the positions of the lines, or the groups of 
lines, onto the line drawn from the origin to the position 
of the environment, or groups of environments, gives a 
prediction of the relative performance of the lines in the 
environments as represented by the ordination. There- 
fore, the biplot shows that line group 24, particularly 
line 17IBl29, performed well at environment group 5 

and that this line group performed poorly at all other 
environment groups, particularly environment group 2. 
This pattern of performance was also observed on the 
two-way response plot (Fig. 3). Line group 25 was pre- 
dicted to show average performance in all environment 
groups because the lines comprising this group were 
centred around the origin (Fig. 4). Similarly, line group 
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25 showed intermediate performance on the response 
plot (Fig. 3). Line group 9 was close to the origin and 
therefore had generally intermediate std-yield but was 
predicted to have higher std-yield than line group 25 in 
environment group 13 and similar or slightly higher 
std-yield than line group 25 in all other environment 
groups (Fig. 4). This pattern was also observed on the 
two-way response plot (Fig. 3). The line group 14, which 
comprised Banks, was predicted to have intermediate 
std-yield in environment group 2 and low std-yield in all 
other environment groups (Fig. 4). The two-way re- 
sponse plot was similar except that group 14 was 
portrayed as expressing high, rather than intermediate, 
std-yield in environment group 2 (Fig. 3). The remaining 
line group 22 was predicted to have intermediate to high 
std-yield in all environment groups and to be the highest 
yielding in environment groups 11, 13 and 15 (Fig. 4). 
Group 22 displayed a high and stable std-yield over the 
environment groups in the two-way response plot 
(Fig. 3). 

Comparing the results on the response plot for the 
two-way classification (Fig. 3) and the biplot from the 
ordination (Fig. 4), it is clear that similar interpretations 
are obtained for the patterns of line discrimination for 
std-yield across the environments. 

Discussion 

The objective of this paper was to show the relationships 
among the analysis of variance, indirect selection, and 
pattern analysis methodologies, for the study of 
genotypic adaptation in plant breeding experiments. 
The theoretical development was used to present the 
relationships and the example to show the practical 
implications of these relationships. 

Where the plant breeder is interested in selection 
among genotypes, G x E interaction introduces uncer- 
tainty into the selection process where it reduces the 
genotypic correlation among environments for the way 
in which these environments discriminate among the 
genotypes. The pooled genetic correlation among all 
pairwise comparisons between the environments is the 
corrected intraclass correlation coefficient derived from 
the combined analysis of variance. Inspecting the rela- 
tive sizes of the genotype and G x E interaction compo- 
nents of variance is essentially an implicit attempt to 
judge the extent to which there will be a lack of correla- 
tion among environments. Therefore, direct estimation 
of the intraclass correlation coefficient is a more explicit 
way of determining the average degree of lack of genetic 
correlation among environments. 

The genetic correlation between environments is the 
central component influencing indirect selection be- 
tween environments. As the pooled genetic correlation 
decreases, there is a decrease in the opportunity for 
achieving an indirect response to selection over a wide 
range of environments from selection in a few environ- 
ments. Hence, as the pooled genetic correlation de- 

creases, or the ratio of the G x E interaction on geno- 
typic variance increases, the question of the opportunity 
to exploit some aspects of the G x E interaction be- 
comes more relevant. This often leads the plant breeder 
to an inspection of specific aspects of the G x E interac- 
tion complex. Accordingly, interest is no longer on the 
pooled genetic correlation among all environments but 
on the genetic correlations for all or specific sets of 
pairwise comparisons of environments. Since there is an 
exponential increase in the number of pairwise compari- 
sons with an increase in the number of environments, 
inspection of individual comparisons becomes impracti- 
cal. To overcome this problem, pattern analysis tech- 
niques can be used to summarise the relationships 
among the environments. Where squared Euclidean 
distance is used as the proximity measure, standardising 
the data by removing the environment main-effects and 
dividing by the square root of the phenotypic variance of 
line means within the environments relates the classifi- 
cation of environments to indirect selection theory. We 
refer to these data as environment standardised data 
(es-data). Therefore, for the plant breeder interested in 
the impact of G x E interaction on selection, working 
with pattern analysis methodology based on es-data 
allows a summarisation of the environmental relation- 
ships in a way which is a direct extension of the familiar 
indirect selection theory and the information derived 
from inspection of variance components estimated from 
the pooled analysis of variance. 

Inspection of the two-way response plot from the 
classification, or the biplot from the ordination, pro- 
vides alternative and complementary ways of inspecting 
the relationships among genotypes and environments. 
Where a high proportion of the genotype and G x E 
interaction variation is accounted for, the two-way re- 
sponse plot and the biplot will generally give a similar 
interpretation of the patterns of discrimination among 
genotypes across the environments. The biplot may be 
viewed as a sorted and re-orientated presentation of the 
original data array. Projecting the relative positions of 
the genotypes onto the environment vectors allows an 
inspection of the practical consequences of indirect se- 
lection among environments. Then, at a defined selec- 
tion intensity the plant breeder can identify which geno- 
types will be selected in which environments and the 
common genotypes selected from each environment. 
Consequently, the biplot is an extremely powerful 
graphic for inspecting the results of plant breeding 
experiments. 

Three major components may be defined in the 
conduct of METs, the process of sampling the environ- 
ments, the analysis of the results obtained from the 
MET, and finally the prediction of response to selection 
for the target population of environments (Fig. 5). 
Cooper et al. (1993c) used this framework to consider 
the impact of G x E interactions on response to selec- 
tion and the way in which plant breeders have attempted 
to accommodate the complications presented by G x E 
interactions in METs. 
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Fig. 5 Schematic representation 
of the recurrent steps involved in 
the conduct of multi-environ- 
ment trials where the objective is 
to sample test environments 
from a pre-defined target popu- 
lation of environments 
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The application of the appropriate analytical 
methodology is one component of the study of G x E 
interactions. To develop a more comprehensive under- 
standing of the nature of the G x E interactions in a 
target population of environments, the nature of the 
environmental challenges encountered must be charac- 
terised. This will require paying greater attention to the 
determination of the environmental factors discrimina- 
tion among genotypes in METs. Strategies for achieving 
this for wheat in Queensland have been discussed 
(Eisemann et al. 1990). Characterising key environmen- 
tal challenges and their frequency of occurrence in the 
target population of environments would enable plant 
breeders to view their targets as a mixture of types of 
challenges rather than one target population of environ- 
ments (Fig. 5). Developing such an enhanced under- 
standing of the composition of the target population of 
environments would lead to the definition of strategies 
for exploiting specific adaptation associated with G x E 
interactions. 

Where the plant breeder is attempting to exploit 
aspects of G x E interaction, there are two critical ques- 
tions which must be addressed. The first is, are the 
aspects of G x E interaction observed in the multi- 
environment experiment repeatable? The second is what 
is the nature of the interaction and how relavant is it to 
the target population of environments for which the 
breeding program is responsible (Fig. 5)? Finding 
answers to these questions will allow definition of what 
aspects of the patterns of performance of genotypes 
across environments can be exploited by selection. By 

separating the repeatable and non-repeatable compo- 
nents of G x E interaction, more objective decisions can 
be made on the scope for selecting for specific adapta- 
tion. 

Clearly these are not easy questions. However, to 
answer these, more emphasis has to be given to "the study 
of the environmental and physiological bases of the 
differences in adaptation for quantitative traits observed 
in plant breeding experiments than has been given in the 
past. The point we make is that there is now an extensive 
array of powerful analytical methodology available to 
the plant breeder and there are clearly-understood rela- 
tionships among these. Generally the application of 
these methodologies to the results of plant breeding 
experiments raises many questions and it is perhaps time 
that we seriously attempt to answer some of these. 
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